科研進(jìn)展
由于其簡(jiǎn)單性,Mohr-Coulomb (M-C)準則和Hoek-Brown (H-B)準則在巖土材料失效描述中得到了廣泛應用,研究人員利用這兩種準則建立了大量問(wèn)題的解析解。但是,由于主應力次序發(fā)生交換導致的屈服面非光滑問(wèn)題給數值分析帶來(lái)一定的困難,如圖1所示。
圖1 主應力空間的Mohr-Coulomb和Hoek-Brown屈服面
最近,中國科學(xué)院武漢巖土力學(xué)研究所計算巖石力學(xué)學(xué)科方向組提出了一種簡(jiǎn)單的方法從根本上解決了這一問(wèn)題。
由Taylor公式可知,主應力應連續光滑地依賴(lài)于應力張量的分量,本研究采用信號處理中廣泛應用的子空間跟蹤方法對主應力的大小及方向進(jìn)行跟蹤,從而可以連續地追蹤主應力的變化過(guò)程,克服了主應力的交換,使得如下的彈塑性系統方程組中的塑性應變增量將是加載過(guò)程的光滑函數,從而消除了角點(diǎn)問(wèn)題。
此外,還得到了如下多屈服面一致切線(xiàn)矩陣:
從下圖可以看出,一致性切線(xiàn)的收斂速度為二次收斂速度。
圖2連續切線(xiàn)與一致切線(xiàn)收斂速度的比較
研究分析了三個(gè)經(jīng)典算例:三維單元邊值問(wèn)題、帶軟弱夾層的二維邊坡及三維土質(zhì)邊坡的邊值問(wèn)題,算例表明該方法可以很好地解決多屈服面的本構積分問(wèn)題。其中三維邊坡算例如下:
圖3 臨界狀態(tài)下的等效塑性應變
圖4 三維邊坡強度折減系數與無(wú)量綱位移
需要指出的是,所提出的方法也可用于其他多屈服面準則,如拉伸截斷的Mohr-Coulomb模型、蓋帽模型等。
該項研究最近發(fā)表在Computers and Mathematics with Applications雜志上。
(文/圖 計算巖石力學(xué)組)